International Journal of Thermophysics, Vol. 19, No. 5, 1998

Erratum 1

Received December 16, 1997

The following are corrections to the paper titled "An Accurate Van der Waals-Type Equation of State for the Lennard–Jones Fluid" by M. Mecke, A. Müller, J. Winkelmann, J. Vrabec, J. Fischer, R. Span, and W. Wagner that appeared in *International Journal of Thermophysics* **17**:391 (1996).

In a recent paper we reported an equation of state for the Lennard-Jones fluid in the form

$$F = F_H + F_A \tag{1}$$

with F_A given by

$$F_{\mathcal{A}}/RT = \sum_{i} c_{i} (T^{*}/T_{c}^{*})^{m_{i}} (\rho^{*}/\rho_{c}^{*})^{n_{i}} \exp[p_{i} (\rho^{*}/\rho_{c}^{*})^{q_{i}}]$$
(4)

where the powers m_i , n_i , p_i , and q_i as well as the coefficients c_i are given in Table III (page 397) of that paper. In that table an error occurred in line 19, which should read properly

<i>c</i>	т	n	р	<i>q</i>
-0.61568007279 <i>E</i> -01	- 5.0	2	-1	2

We thank Dozent Dr. Rolf Lustig, Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, U.S.A., for bringing this error to our attention.

0195-928X/98/0900-1493\$15.00/0 (C) 1998 Plenum Publishing Corporation

International Journal of Thermophysics, Vol. 19, No. 5, 1998

Erratum 2

Received December 24, 1997

The following are corrections to the paper titled "An Equation of State for Two-Center Lennard–Jones Fluids" by M. Mecke, A. Müller, J. Winkelmann, and J. Fischer, that appeared in *International Journal of Thermophysics* **18**:683 (1997).

In a recent paper we reported an equation of state for the Lennard-Jones fluid in the form

$$F = F_H + F_A \tag{1}$$

The term F_H is given in Eq. (6) of that paper in correct form. It is given more explicitly in Eq. (12) (page 686) which, however, contains an error and should read properly as

$$\frac{F_H}{RT} = (f_3(L)^2 - 1)\ln(1 - \xi) + \frac{(f_3(L)^2 + 3f_3(L))\xi - 3f_3(L)\xi^2}{(1 - \xi)^2}$$
(12)

Moreover, Eq. (9) for $f_2(L)$ (page 686) also contains errors and should read properly as

$$f_2(L) = \begin{cases} (1/4) [(P_5 + P_6 L)/(1 + P_7 L + P_8 L^2)]^{1/2} & \text{for } L = 0.0 \\ [(P_5 + P_6 L)/(1 + P_7 L + P_8 L^2)]^{1/2} & \text{for } L > 0.0 \end{cases}$$
(9)

We thank Dr. Martin Lisal from the Institute of Chemical Process Fundamentals, Prague, Czech Republic for bringing these errors to our attention.

0195-928X/98/0900-1495\$15.00/0 © 1998 Plenum Publishing Corporation

International Journal of Thermophysics, Vol. 19, No. 5, 1998

Erratum 3

Received June 1, 1998

The following are corrections to the paper titled "Thermodynamic Properties of *n*-Hexane" by B. A. Grigoryev, Y. L. Rastorguyev, A. A. Gerasimov, D. S. Kurumov, and S. A. Plotnikov that appeared in the *International Journal of Thermophysics* 9:439 (1988).

Equation (1) reads

$$z = 1 + \sum_{i=1}^{r} \sum_{j=0}^{s} b_{ij} \,\omega^{i} \theta^{j}$$
(1)

with coefficients (page 446)

$b_{10} = 1.418961$	$b_{50} = -2.132277$
$b_{11} = -4.460154$	$b_{51} = -2.660180 \times 10^{-1}$
$b_{12} = 2.838127$	$b_{52} = 1.482821$
$b_{14} = -1.155566$	
$b_{18} = 2.981982 \times 10^{-2}$	$b_{60} = 1.015613$
	$b_{61} = -5.151667 \times 10^{-1}$
$b_{20} = -2.971036 \times 10^{-1}$	
$b_{21} = 5.298878 \times 10^{-1}$	$b_{70} = -2.019526 \times 10^{-1}$
$b_{22} = -5.467548$	$b_{71} = 8.836143 \times 10^{-2}$
$b_{24} = 1.200501$	$b_{74} = -4.340096 \times 10^{-3}$
$b_{28} = -5.893447 \times 10^{-2}$	$b_{78} = -9.908889 \times 10^{-3}$
$b_{30} = 8.874639 \times 10^{-1}$	$b_{80} = 1.552810 \times 10^{-2}$
$b_{31} = -1.058535 \times 10^{-1}$	$b_{82} = -6.039342 \times 10^{-3}$
$b_{32} = 1.031171 \times 10^{-1}$	$b_{84} = 1.331250 \times 10^{-3}$
$b_{33} = -8.860190 \times 10^{-1}$	$b_{85} = -8.367965 \times 10^{-5}$
$b_{38} = 1.969848 \times 10^{-2}$	$b_{88} = 1.851536 \times 10^{-5}$
$b_{40} = 1.355310$	
$b_{40} = 1.55510$ $b_{41} = 5.780836$	
$v_{41} - 5.700000$	

1497

 $b_{41} = 5.780830$ $b_{42} = -6.441410$

0195-928X/98/0900-1497\$15.00/0 © 1998 Plenum Publishing Corporation

In addition, the temperature-correction function $f(\theta)$ is given by

$$f(\theta) = \sum_{i=1}^{8} a_i (\theta - 1)^i$$

with coefficients

$$a_1 = 0.172; a_2 = 0;$$

 $a_3 = 4.6371; a_4 = -2.6663$
 $a_5 = 3.0747; a_6 = -0.90653;$
 $a_7 = 0.52677; a_8 = -0.037954$

1498

Printed in Belgium